# Lecture 8 CFD for Ramjets/Scramjets and Rockets

- High compressibility in the flow
  - Shock-vortex-turbulence-flame interactions
- Challenge
  - Shock capturing schemes are too dissipative and can overwhelm turbulent features
  - Turbulent features must show compressibility effects
- Some strategies
  - Hybrid solvers (WENO-central; MUSCL-central etc)
  - Artificial dissipation, high order PPM etc
- What will work for practical applications?

## Challenges for Supersonic Combustion LES

- Algorithms for shock-turbulence-flame interactions
  - Shock capturing without dissipating turbulence or affecting combustion or flame within LES framework
- Subgrid closure for compressible turbulent flows
  - Shock interactions with {un}resolved turbulence
- Subgrid closure for compressible mixing and combustion
  - Interaction of compressible waves with flames
- Molecular mixing and chemical kinetics within subgrid
  - Detailed kinetics within LES framework

## Compressible LES Governing Equations

Favre-averaged filtered conservation equations

$$\begin{aligned} & \mathbf{Mass} & \frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial x_{i}} = 0 \\ & \mathbf{Moment.} & \frac{\partial \overline{\rho} \widetilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left( \overline{\rho} \widetilde{u}_{i} \widetilde{u}_{j} + \overline{p} \delta_{ij} - \overline{\tau}_{ij} + \overline{\tau}_{ij}^{sgs} \right) = 0 \\ & \mathbf{Energy} & \frac{\partial \overline{\rho} \widetilde{E}}{\partial t} + \frac{\partial}{\partial x_{i}} \left[ \widetilde{u}_{i} (\overline{\rho} \widetilde{E} + \overline{p}) - \overline{\tau}_{ij} \widetilde{u}_{j} + \overline{q}_{i} + \overline{H}_{i}^{sgs} + \sigma_{i}^{sgs} \right] = 0 \\ & \mathbf{E.O.S} & \overline{p} = \overline{\rho} \widetilde{R} \widetilde{T} + \overline{\rho} T^{sgs} \\ & \overline{q}_{i} = -\overline{\kappa} \frac{\partial \widetilde{T}}{\partial x_{i}} + \overline{\rho} \sum_{k=1}^{N_{s}} \widetilde{h}_{k} \widetilde{V}_{i,k} \widetilde{Y}_{k} + \sum_{k=1}^{N_{s}} \overline{q}_{i,k}^{sgs} \\ & \overline{Mode} \end{aligned}$$

Species solved using LEMLES



## Hybrid Algorithm for Shock-Turbulence-

- Locally adaptive hybrid strategy switches from shock capturing solver to a smooth-flow (O(4)) solver dynamically in 3D
- Piecewise Parabolized Method (PPM FLASH3D type)\*
  - Extended to viscous flows, multi-domain, stretched grids
- MUSCL reconstruction with a Hybrid HLL Riemann Solver\*\*
  - Non-contact preserving in shock transverse directions (Einfeldt, 1988, 1991)
  - Contact preserving Riemann solver (HLLC, Toro, 1997)
- Local shock detection using multiple sensors
- Algorithm validated for many canonical and complex test cases: Sod, Noh, Richtmyer-Meshkov, Shock-turbulence etc.\*\*

#### VLES-LES k-kl Model

- Hybrid RANS-LES for compressible flows using an additive filter (J. Comp. Phys. Vol. 228, 2009)
  - Hybrid terms need to be modeled still under work
- Solve for the single point and two-point velocity correlations (k, kl) for near-wall treatment model is still under development
  - $-I_{sqs} > \Delta$ , the grid size is the length scale
  - $I_{sgs}$  <  $\Delta$ , the modeled length scale is used
- Distance from wall is used currently in the isolator (K-DES)

$$\frac{\partial \left(\overline{\rho}k_{sgs}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\tilde{u}_{i}k_{sgs}\right)}{\partial x_{j}} = \tau_{ij}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} - D_{sgs} + \frac{\partial}{\partial x_{i}}\left[\overline{\rho}\left(\frac{v}{\operatorname{Pr}_{t}} + \frac{v_{t}}{\sigma_{k}}\right)\frac{\partial k_{sgs}}{\partial x_{i}}\right]$$

$$\frac{\partial \left(\overline{\rho}(k\ell)_{sgs}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\tilde{u}_{i}(k\ell)_{sgs}\right)}{\partial x_{j}} = C_{L1}\ell_{sgs}\tau_{ij}\frac{\partial \tilde{u}_{i}}{\partial x_{j}} - C_{L2}\overline{\rho}k_{sgs}^{3/2} + \frac{\partial}{\partial x_{i}}\left[\overline{\rho}\left(\frac{v}{\operatorname{Pr}_{t}} + \frac{v_{t}}{\sigma_{k\ell}}\right)\frac{\partial (k\ell)_{sgs}}{\partial x_{i}}\right]$$

Fang and Menon (2006) Rocha and Menon, 2009 Day 2, Lecture 8, Suresh Menon, Georgia Tech

## **General Realizability Constraints**

• Constraints on subgrid models (Vreman, *et al.*, 1994; Nelson and Menon, 1998, Fang and Menon, 2006):

$$\tau_{\alpha\alpha}^{sgs} \geq 0 \quad \left(\tau_{\alpha\beta}^{sgs}\right)^{2} \leq \tau_{\alpha\alpha}^{sgs}\tau_{\beta\beta}^{sgs} \quad \text{for} \quad \alpha \neq \beta \quad \det\left(\tau_{\alpha\beta}^{sgs}\right) \geq 0$$

$$k^{sgs} \geq \frac{\sqrt{3}}{C_{\alpha}}v_{t}\sqrt{2\tilde{S}_{ij}\tilde{S}_{ji}} - \frac{2}{3}\tilde{S}_{kk}^{2} \quad \text{with} \quad \tilde{S}_{ij}\tilde{S}_{ji} = \sum_{i=1}^{3}\sum_{j=1}^{3}\tilde{S}_{ij}\tilde{S}_{ji}$$

$$C_{v} = \min(C_{v}, C_{v, \lim}) \quad C_{v, \lim} = \frac{1}{\sqrt{6}s}$$

$$s = \frac{l^{sgs}}{\sqrt{k^{sgs}}}\sqrt{\tilde{S}_{ij}\tilde{S}_{ji}} - \frac{1}{3}\tilde{S}_{kk}^{2}$$

$$l^{sgs} = \min(l^{sgs}, l_{\lim}^{sgs}) \ l_{\lim}^{sgs} = \frac{1}{\sqrt{6}} \frac{\sqrt{k^{sgs}}}{C_{v}} \left(\tilde{S}_{ij}\tilde{S}_{ji} - \frac{1}{3}\tilde{S}_{kk}^{2}\right)^{-0.5}$$

## K-KL Rearward Facing Step



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Scalar Fluctuation Modeling

- Used in typical RANS, URANS codes (e.g. CRAFTTech)
- Specify turbulent Prandtl and Schmidt numbers
  - First order effect impacts combustion efficiency
  - Use local estimates of turbulent Pr and Sc
    - Adjust to the flow rather than set a priori
    - Obtained from the turbulent closure
      - Used in URANS and in conventional LES
- Dynamic subgrid closures avoid this explicit relations but also capture variable and local turbulent Pr and Sc.

#### **SCALAR FLUCTUATION MODEL (SFM)**

Transport equations solved for scalar variance and its dissipation rate

$$\begin{split} \frac{\partial(\overline{\rho}k_{e})}{\partial t} + \frac{\partial(\overline{\rho}\,\tilde{u}_{j}k_{e})}{\partial x_{j}} &= \frac{\partial}{\partial x_{j}} \Bigg[ \overline{\rho} \bigg[ \alpha + \frac{\alpha_{t}}{\sigma_{k,e}} \bigg] \frac{\partial k_{e}}{\partial x_{j}} \Bigg] + 2 \overline{\rho} \alpha_{t} \bigg( \frac{\partial \tilde{e}}{\partial x_{j}} \bigg)^{2} - 2 \overline{\rho} \varepsilon_{e} \\ \frac{\partial(\overline{\rho}\varepsilon_{e})}{\partial t} + \frac{\partial(\overline{\rho}\,\tilde{u}_{j}\varepsilon_{e})}{\partial x_{j}} &= \frac{\partial}{\partial x_{j}} \Bigg[ \overline{\rho} \bigg[ \alpha + \frac{\alpha_{t}}{\sigma_{\varepsilon,e}} \bigg] \frac{\partial \varepsilon_{e}}{\partial x_{j}} \Bigg] + \overline{\rho} \alpha_{t} \bigg( C_{d1} \frac{\varepsilon_{e}}{k_{e}} + C_{d2} \frac{\varepsilon}{k} \bigg) \bigg( \frac{\partial \tilde{e}}{\partial x_{j}} \bigg)^{2} \\ &+ C_{d3} \hat{P}_{k} \frac{\varepsilon_{e}}{k} - \bigg( C_{d4} \frac{\varepsilon_{e}}{k_{e}} + C_{d5} \frac{\varepsilon}{k} \bigg) \overline{\rho} \varepsilon_{e} + \xi_{\varepsilon T} \end{split}$$

Compressibility Correction  $\longrightarrow \hat{P}_k = P_k - \alpha_I \hat{M}_T^2 P_k - \alpha_2 \hat{M}_T^2 \overline{\rho} \varepsilon$ 

| Turbulent Prandtl Number                                                                                       |                     |                 |                | Turbulent Schmidt Number                                                                                 |                |                      |                        |
|----------------------------------------------------------------------------------------------------------------|---------------------|-----------------|----------------|----------------------------------------------------------------------------------------------------------|----------------|----------------------|------------------------|
| $Pr_{t} = rac{C_{\mu} f_{\mu}}{C_{\lambda} f_{\lambda}} \sqrt{rac{k}{arepsilon} rac{arepsilon_{e}}{k_{e}}}$ |                     |                 |                | $Sc_t = rac{C_{\mu} f_{\mu}}{C_{\lambda} f_{\lambda}} \sqrt{rac{k}{arepsilon} rac{arepsilon_f}{k_f}}$ |                |                      |                        |
| • Energy Variance $k_e = \widetilde{e''e''}$                                                                   |                     |                 |                | • Mixture Fraction Variance $k_f = \widetilde{f''f''}$                                                   |                |                      |                        |
| $ullet$ Dissipation Rate $arepsilon_e$                                                                         |                     |                 |                | $ullet$ Dissipation Rate $arepsilon_{\!f}$                                                               |                |                      |                        |
| C <sub>d1</sub> = 2.0 C <sub>d</sub>                                                                           | <sub>d2</sub> = 0.0 | $C_{d3} = 0.72$ | C <sup>q</sup> | ı = 2.2                                                                                                  | $C_{d5} = 0.8$ | $\sigma_{k,e} = 1.0$ | σ <sub>ε,e</sub> = 1.0 |

#### Hot (800K) Supersonic Jet - SFM vs LES



Day 2, Lecture 8, Suresh Menon, Georgia Tech

#### AIAA CFD for Combustion Modeling

#### **SCHOLAR COMBUSTION EXPERIMENT**



Turbulent Prandtl Number

**Turbulent Schmidt Number** 

Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Compressible Subgrid Kinetic Energy Closure

Transport of the subgrid kinetic energy

$$\frac{\partial}{\partial t} \overline{\rho} \, k^{sgs} + \frac{\partial}{\partial x_i} \left( \overline{\rho} \, \widetilde{u}_i k^{sgs} \right) = \mathcal{T}_{k^{sgs}} + p d_{k^{sgs}} + P_{k^{sgs}} - D_{k^{sgs}}$$

Production

$$P_{k^{sgs}} = -\tau_{ij}^{sgs} \frac{\partial \widetilde{u}_{j}}{\partial x_{i}} \qquad \tau_{ij}^{sgs} = -2\overline{\rho} v_{t} \left( \widetilde{S}_{ij} - \frac{1}{3} \widetilde{S}_{kk} \delta_{ij} \right) + \frac{2}{3} \overline{\rho} k^{sgs} \delta_{ij}$$

Dissipation

$$- \text{ Diffusion/Trar } D_{k^{sgs}} = \left( \overline{\tau_{ij}} \frac{\partial u_i}{\partial x_j} - \overline{\tau_{ij}} \frac{\partial \widetilde{u_i}}{\partial x_j} \right)$$

Pressure-Dilatation Correlation

$$\mathcal{T}_{k^{sgs}} = -\frac{\partial}{\partial x_i} \left( (\overline{\rho} \widetilde{K} u_i - \overline{\rho} \widetilde{K} \widetilde{u}_i - \overline{u}_j \tau_{ij}^{sgs}) + \overline{(\overline{u_i} P - \widetilde{u}_i \overline{P})} - (\overline{u_j \tau_{ij}} - \widetilde{u}_j \overline{\tau_{ij}}) \right)$$

$$pd_{k^{sgs}} = \overline{P\frac{\partial u_i}{\partial x_i}} - \overline{P}\frac{\partial \widetilde{u_i}}{\partial x_i}$$

Genin and Menon (AIAA-2009, Comp. Fl., 2010; J. Turb., 2010)

## **Closure for Compressible Flows**

 Diffusion of k<sup>sgs</sup> due to pressure fluctuations transfers acoustic energy from shock front corrugation to subgrid kinetic energy

$$\overline{u_i P} - \widetilde{u_i} \overline{P} = \overline{\rho} \widetilde{R} (\widetilde{u_i T} - \widetilde{u_i} \widetilde{T}) = -\frac{\overline{\rho} \nu_t \widetilde{R}}{P r_t} \frac{\partial \widetilde{T}}{\partial x_i}$$

Subgrid pressure – dilatation correlation

$$pd_{k^{sgs}} = \alpha_{pd} M_t^{sgs2} \left( \frac{\overline{\rho} \widetilde{S} k^{sgs}}{D_{k^{sgs}}} \right)^2 \left( P_{k^{sgs}} - D_{k^{sgs}} \right)$$

Energy Equation closure (turbulent Prandtl number)

$$H_i^{sgs} + \sigma_i^{sgs} = -(\overline{\rho}v_t + \mu)\frac{\partial k^{sgs}}{\partial x_i} - \frac{\overline{\rho}v_t}{\operatorname{Pr}_t}\frac{\partial \widetilde{T}}{\partial x_i} + \widetilde{u}_j\tau_{ij}^{sgs}$$

## **Localized Dynamic Evaluation**

- Extension of LDKM (Kim and Menon, 1995, 1991) for lowspeed flows to compressible flows
  - Genin and Menon, Comp. FI (2010), JoT (2010)
- SGS closure model constants obtained from shock-turbulence DNS/LES comparison (Comp. Fl., 2010)
- Dynamic closure using scale similarity at the test filter level
  - Numerically robust and stable in complex flows
- Localized dynamic evaluation of Pr<sub>t</sub> can be used to close
  - Subgrid energy diffusion in the energy equation
  - Diffusion of k<sup>sgs</sup> due to pressure fluctuations
- Localized dynamic evaluation of Sc<sub>t</sub> (if not using LEM)
- NO model parameters that are adjusted to match test case

## **LEMLES: Grid-Within-Grid Approach**



- Multi-scale (space and time) approach (LEMLES)
- Application to subsonic turbulent reacting flows since 2000
  - No ad hoc model constant adjustments
- Extension to shock-turbulence-flame interaction problems
  - LEM updated to allow for subgrid pressure variation
    - subgrid compression and expansion
  - Explicit presence of shock in subgrid not yet included

## **Hybrid Numerical Algorithm**

- Locally adaptive hybrid strategy switches from shock capturing solver to a smooth-flow (O(4)) solver locally and dynamically
- Piecewise Parabolized Method (PPM FLASH3D)
  - Extended to viscous flows, multi-domain, stretched grids
- MUSCL reconstruction with Hybrid HLL Riemann Solver
  - Non-contact preserving in shock transverse directions (HLLE, Einfeldt, 1988, 1991)
  - Contact preserving Riemann solver (HLLC, Toro, 1997)
- The current hybrid solver is identified as 4th/HLLC/E
  - Smoothness local sensors to switch between O(4) & HLL
  - Local shock detection to switch from HLLC to HLLE

## Numerical scheme and accuracy

 Illustration for Scramjet flowfield: Supersonic airflow (M=2) over a 6 degrees wedge – vortex street and turbulence



- (1) Pure upwind is dissipative
- (2) Central with artificial dissipation is dispersive
- (3) Hybrid method to switch between numerical schemes



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Riemann Solvers Instabilities and Remedy

- Odd-Even decoupling and Carbuncle phenomenon arise in numerical resolution of shock waves
  - neighboring mesh points along a shock front decouple
  - strongly deform shock fronts and creates parasitic oscillations in the post-shock region
- → Design of a hybrid Riemann solver Extension of Quirk's cure to Riemann solvers: use of a non-contact preserving Riemann solver in the directions transverse to the shock normal
- Flattening (reduce reconstruction order close to strong shocks) to prevent post-shock oscillations

#### Carbuncle Test Case



- M=10 air flow onto a cylindrical body
- Appearance of singular points for contact-preserving solvers
  - not seen for HLLE
- Even more reduced effect with HLLC/E

#### **Normal Shock-Turbulence Interaction**

DNS (231x81x81) and LES (106x32x32)

Isotropic turbulence (243x81x81) superposed on supersonic inflow:

| $M_{inflow}$   | 1.29 |       | 2 | 3     | 3     |
|----------------|------|-------|---|-------|-------|
| $Re_{\lambda}$ |      | 19.1  |   | 19.0  | 19.7  |
| $M_t$          |      | 0.140 |   | 0.108 | 0.110 |



- Variations of local Mach number → Shock corrugation
- Post-shock pressure fluctuations, acoustic wave
- Exchange between acoustic energy & turbulent kinetic energy

Day 2, Lecture 8, Suresh Menon, Georgia Tech

#### **Shock-Turbulence Interaction**



° Compressibility correction is important to account for transfer of acoustic  $Day\ 2$ , energy from shock corrugations to sub-grid kinetic energy

#### **Normal Shock / Turbulence Interaction**



- LES captures most of the DNS features
- Dynamic model shows stable predictions for all simulated M
- Compressibility corrections appears to work well

## Numerical scheme and accuracy

- Proper capture of the flow discontinuities with upwind scheme and resolution of the instability and turbulence
- (1) Temperature field
- (2) Use of upwinding in the I-direction
- (3) Use of upwinding in the J-direction



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Numerical scheme and accuracy

- With reaction, more sharp fronts
- Sonic injection of H<sub>2</sub> at the base of the wedge
- (1)Temperature field
- (2)Use of upwinding in the I-direction
- (3)Use of upwinding in the J-direction



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Non-Reacting and Reacting DLR Test Case





Time-averaged density





**Experimental Schlieren** 





COLD Instantaneous density HOT Penin and Wienon, Always 1/2 Meyron, Georgia Tech

## **Comparisons with DLR Data**



Experimenta

**OH-PLIF** 

- Flame anchors by re-circulation of hot products with intermittent reverse flows
- Partially premixed ignition
- Diffusion flame along the shear layer





#### Sonic Jet in M=1.6 Cross-Flow



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## **Comparison with Experiments**



Expt. (x/d=5) LES

Santiago and Dutton (JPP, 1997)

## **Supersonic JICF**



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Adaptive Refined Level Set in LESLIE

- Application to moving shocks, flames and bodies
- ~ AMR for shocks and flames
- Interface tracking and cut-cell for moving bodies





Zaleski Disk Deforming Ellipsoid in M = 6

- Osher and Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, 2002
- ·Charand, Menory At As -2010es 14, 2011 to 14, Georgia Tech

## **Strategies in DIGGIT**

- Compressible 5-equation two-fluid model included
- Time integration with TVD-RK O(3) or SDC (for higher order)
- AMR based on detecting inter-element discontinuity
- For smooth flows: Up to O(7) in space and O(5) in time
- Trouble cell detector to apply moment limiter for shocks



Grybgayten et al. 12011, Eryngarten And Menon, Alary i 2011/294

LDG: Shock - Gas Bubble in Air

- M=1.22 He-air 2D cylindrical bubble with 4-level AMR (right)
- M=1.7 Kr-air spherical bubble
- Layes and Le Metayer, (Phys. Fl., 2007)





#### LDG: Shock – Air 3D Bubble in Water



Day 2, Lecture 8, Suresh Menon, Progretate Menon, 2011

## **Compressible Spatial Shear Layer**



| Parameter           | $M_c = 0.28$    | $M_c=0.62$       |  |
|---------------------|-----------------|------------------|--|
| $M_1$               | 1.64            | 2.0              |  |
| $M_2$               | 0.91            | 0.4              |  |
| $U_1(m/s)$          | 430             | 480              |  |
| $U_2(m/s)$          | 275             | 130              |  |
| $T_1(K)$            | 172             | 150              |  |
| $T_2(K)$            | 223             | 252              |  |
| $P_{O_1}(Kpa)$      | 302             | 495              |  |
| $P_{O_2}(Kpa)$      | 115             | 75               |  |
| $ ho_2/ ho_1$       | 0.77            | 0.59             |  |
| $U_2/U_1$           | 0.63            | 0.27             |  |
| $\lambda_B \ \mu m$ | 1.7             | 0.8              |  |
| Resolution          | $2-7 \lambda_B$ | $5-14 \lambda_B$ |  |

- LEMLES resolution same as experiment deliberately
- \* Passive scalar mixing

Day 2, Lecture 8, Suresh Menon, Georgia Tech

## Profiles of Axial Velocity, Mc = 0.62



- GRAD-DIFF and LEMLES employs same k-sgs closure
- Both methods agree well with the experiments

## RMS Axial Velocity, Mc = 0.62



3D captures the shear layer spread correctly

# RMS Transverse Velocity, Mc = 0.62



- GRAD-DIFF and LEMLES over-predicts the peak by < 6%
- Good agreement in the shear layer region

Day 2, Lecture 8, Suresh Menon, Georgia Tech

### **Normalized Growth Rate**



Day 2, Lecture 8, Suresh Menon, Georgia Tech

### Mean Mixture Fraction, Mc = 0.62



- Improvement in mean mixture fraction prediction for GRAD-DIFF
- LEMLES results are closer to the experiment near the edges

### Day 2, Lecture 8, Suresh Menon, Georgia Tech

# RMS of the Mixture Fraction, Mc = 0.62



GRAD-DIFF predicts a higher RMS compared to LEMLES

### PDF of Mixture Fraction



- LEMLES correctly predicts the shape and width of the PDF
- Gradient diffusion LES fails to predict both these features
- Note: given PDF all scalar moments can be predicted

### **Numerical Studies of WPAFB TC19**

- Full test facility is numerically simulated
- Hybrid VLES-LES in the isolator
- Two configurations studied
  - Cavity with 11 injectors on aft ramp
  - Strut upstream of cavity with 6 injectors
- 8+ million cells, 12/18 LEM cells per LES cell
  - Smallest mesh size ~ 0.01 mm
  - 30+ points in wall boundary layer









Day 2, Lecture 8, Suresh Menon, Georgia Tech

P<sub>\_inj</sub> (KPa)

690

T<sub>\_inj</sub>

300

### **Mach 2 Flow Conditions**

| Test<br>Configuration | Stagnation<br>Conditions |              | Isentropic<br>Conditions<br>at Isolator |     |                            |                              |                             |                     |
|-----------------------|--------------------------|--------------|-----------------------------------------|-----|----------------------------|------------------------------|-----------------------------|---------------------|
|                       | P0<br>(kPa)              | T0<br>(K)    |                                         |     | ṁ <sub>air</sub><br>(kg/s) | ṁ <sub>water</sub><br>(kg/s) | Relative<br>Humidity<br>(%) | Fuel Rate<br>(SLPM) |
| No-Strut              | 414                      | 589          | 53                                      | 327 | 3.2                        | 25                           | 4                           | 225                 |
| Strut<br>(Reacting)   | 207<br>(449)             | 564<br>(600) | 26                                      | 313 | 1.6                        | 25                           | 9                           | 270                 |

- CH<sub>4</sub> H<sub>2</sub> blended fuel (70% 30%)
- Reduced 4-step, 8 species mechanisms\*
- Local Reynolds number, Re<sub>x</sub> ~ 42e6 m⁻¹
- Stagnation conditions for strut reacting case are changed (shown in red)

$$CH_4 + 2H + H_2O \rightarrow 4H_2 + CO \quad H_2O + CO \rightarrow H_2 + CO_2$$
  
 $2H + M \rightarrow H_2 + M \quad 3H_2 + O_2 \rightarrow 2H + 2H_2O$ 

# **Energy Spectrum**



(a) No-Strut: X = 53.8 mm within the shear layer and (b) Strut: X = 33.8 mm in the strut wake

Recover k<sup>-5/3</sup> law in shear layer and strut wake

Day 2, Lecture 8, Suresh Menon, Georgia Tech

Non-reacting Flow: Cavity without Strut



- Time averaged mean velocity streamlines

Large vortical flow inside cavity

Good agreement with data

Day 2, Lecture 8, Suresh Menon, Georgia Tech

### **Wall Pressure**



**Wall Pressure** 

Day 2, Lecture & Sayreshelmenon, Georgios Tech

# Velocity Comparisons: Non-Reacting, Strut

- Multiple shear layers in the wake of strut
- The overall spreading of wall-bounded cavity shear layer and velocity fluctuations are captured reasonably well



Day 2, Lecture & Sayreshellenopal Georgios Tech

### **Wall Pressure Strut**





- Shock off strut LE (X= -30 mm)
- re-compression shock at aft ramp portion (X ~ 86 mm)
- Expansion at the cavity leading edge
- Expansion-compression around strut top edge

Wall Pressure

Day 2, Lecture & Gray R. Lecture

# Reacting Case: Temperature Field No-Strut







- Mean <T> shows that the cavity is full of products
  - Lifts shear layer for oxidizer entrainment into the cavity
- Instantaneous Temperature shows more variation in the cavity
- T at span-wise location (X = 27 mm) shows significant 3D structures
- High level of turbulence generated by aft wall fuelling

# Flame Structure and Reaction Rate: No-

Strut





Reaction rate of CH4 at (a) Z = 0 plane and (b) X = 27 mm span-wise plane





Reaction rate of H2 at (c) Z = 0 plane and (d) X = 27 mm span-wise plane

#### Methane and Hydrogen flame structures

# Reacting Case: with and without Strut





- Pressure comparison shows some reasonable agreement
- Peaks observed at locations where there are no pressure data locations of secondary shocks

### **Instantaneous Contours of Products: Strut**





Contours of CO2 at (a) Z = 0 plane and (b) X = 27 mm span-wise plane





Contours of H2O at (a) Z = 0 plane and (b) X = 27 mm span-wise plane

Day 2, Lecture 8, Suresh Menon, Georgia Tech

## **Streamlines**



Day 2, Lecture 8, Suresh Menon, Georgia Tech

## **Strut and No-Strut Comparison**









Day 2, Lecture 8, Suresh Menon, Georgia Tech

# Flame Index = normalized $\nabla Y_F \cdot \nabla Y_O$





No Strut – Cavity





CH<sub>4</sub> Strut Wake H<sub>2</sub>

Flame Index > 0 for premixed flame and < 0 for diffusion flame</li>
 Day 2, Lecture 8, Suresh Menon, Georgia Tech

# Reacting Flow – Flame Regimes for LES



- Strong variation of Ka from flamelet to broken reaction zone
- LEMLES captures all regimes without model change

Day 2, Lecture 8, Suresh Menon, Georgia Tech

# **Chemical Kinetics Modeling**

The description of the chemical kinetics is very important as its time-scales  $(\tau_c)$  are on the same order-of-magnitude as those of the flow  $(\tau_I, \tau_\Lambda, \tau_T)$ .



Day 2, Lecture 8, Suresh Menon, Georgia Tech

### The Waidmann et al Combustor

#### DLR experimental investigation

Waidmann W., Brummund U. & Nuding J.; 1995, 8<sup>th</sup> Int. Symp. on Transp. Phenom. In Comb., p 1473. Waidmann W., Alff F., Brummund U., Böhm M., Clauss W. & Oschwald M.; 1995, Space Tech. **15**, p 421.



Berglund & Fureby, 2006,31<sup>st</sup> Int. Symp. On Com. Génin & Menon, 2009, AIAA 2009-0132 Fureby et al., 2011, 28<sup>th</sup> ISSSW, Manchester

Day 2, Lecture 8, Suresh Menon, Georgia Tech

### AIAA CFD for Combustion Modeling

# Sunami-Magré Combustor

Joint ONERA / JAXA experimental (scramjet) combustor study

Sunami T., Murakami A., Kudo K., Kodera M. & Nishioka M., AIAA 2002-5116,

Sunami T., Magré P., Bresson A., Grisch F., Orain M., & Kodera M., AIAA 2005-3304



Berglund *et al*, 2009, AIAA J. Sabelnikov & Fureby In Preparation 2011

ONERA

# Sunami-Magré Combustor cont' d

Supersonic flame structure investigation (ONH10) and OH comparison



Berglund *et al*, 2009, AIAA J. Sabelnikov & Fureby In Preparation 2011



# Real Gas: Basic thermodynamics

- Under atmospheric conditions, most fluids require a phase change to go from liquid to gas
  - Multiphase field: breakup, atomization, evaporation...
- Not necessary if T > T<sub>c</sub> OR p > γ
  - Smooth interface
  - No surface tension
  - No latent heat of vaporization
- If T > Tc AND p > pc, fluid is supercritical



# **Basic thermodynamics**

- A supercritical fluid may or may not follow the Ideal Gas Equation of State (IG EoS) nV = RT
- Departure from IG EoS caused by inter-molecular effects:
  - Molecules cannot be assumed to be points
  - Inter-molecular forces on top of simple collisions
- These real gas, i.e. non-ideal, effects occur when the density of the fluid is large enough
  - What is large enough?

# **Basic thermodynamics**

- Introduce compressibility
  - Z=1 => ideal gas
  - Z\=1 => real gas
- Hint at a universal behavior
  - Z is equivalent for simple species when normalizing
     T and p by T<sub>c</sub> and p<sub>c</sub>
- Mathematical translation into new EoS

$$Z = \frac{pV}{R_u T}$$



### Relevance to combustion

- Overall trend is to increase pressure (GT,ICE,rockets)
- Three flows where real gas effects are important:
  - Sub-critical flows
    - All species gaseous, mild departures from Z = 1
  - Super-critical flows
    - Some species supercritical, Z = 0.3 to 1
  - Trans-critical flows
    - Some species are compressed liquids, Z can vary from 0.3 to 1 and pseudo-phase change phenomena

### Relevance to combustion

- Concrete example: surrogate aircraft fuel
  - 82.6 % n-decane and 17.4% trimethylbenzene (Pitsch\_2008a)
- Corresponding states principle (CSP)
  - Mixture behaves like a pure pseudo-fluid with pseudo critical propertie



Day 2, Lecture 8, Suresh Menon, Georgia Tech

# Issues for combustion modeling

- Large density gradients
- Computational cost
- Additional unclosed terms
- Pressure dependence in reaction mechanisms
- EoS validity for a wide range of flow conditions and species must be understood and established
  - Cubic EoS such as Peng-Robinson (PR), Soave-Redlich-Kwong (SRK)
  - Higher order empirical EoS such as Benedict-Webb-Rubin (BWR)

# Dealing with density gradients

- Need to capture both large density gradients & turbulence at the same time
- Implement within the real gas EoS:
  - TVD MUSCL scheme using approximate Riemann solver for 3<sup>rd</sup> order accuracy
  - Dynamic switch based on local density gradients
- Pure central schemes cannot handle these gradients without huge resolution requirements
- Pure upwind schemes are too dissipative

# Dealing with density gradients

Shu-Osher test



Day 2, Lecture 8, Suresh Menon, Georgia Tech

### PSU RCM1

- Super-critical combustion without trans-critical event
  - Injection temperatures are high enough that real gas effects are negligible
  - Still large density gradients
  - Importance of pressure on reaction mechanism
- Simplest configuration relevant to staged combustion
  - Gas-gas H<sub>2</sub>-O<sub>2</sub> shear coaxial injector
  - Cylindrical chamber instrumented for heat flux measurement



Day 2, Lecture 8, Suresh Menon, Georgia Tech

# **PSU RCM1 - Combustion modeling**

- Characteristics of the PSU simulation
  - Good resolution in near-field and slow secondary combustion
  - Eddy Break-Up not adapted
- Detailed 21-step,
   8-species mechanism (Conaire\_2004)
  - Very stiff to integrate
- Simplest closure: sub-iteration scheme
- Future strategies
  - Reduced mechanism
  - LEM with ANN



Day 2, Lecture 8, Suresh Menon, Georgia Tech

# **PSU RCM1 - Flowfield description**



- Distinguishing 4 different zones:
  - A: oxygen jet core >>> primary diffusion flame
  - B: accelerating then decelerating flow >>> secondary combustion
  - C: recirculation zone >>> very little combustion
- D: homogeneous flow >>> no more reaction
   Day 2, Lecture 8, Suresh Menon, Georgia Tech

1 frame =  $1 \mu s$ 

movie = 0.3 ms

# Oxygen jet break-up



Day 2, Lecture 8, Suresh Menon, Georgia Tech

LES

LES

AXI-

**URANS** 

**PSU RCM1 – Comparison CFD solvers** 



Wide range of CFD tools

- Similar heat flux
- Different flow structure
- Best prediction: wall-resolved LES? AXI-RANS
- Many parameters influence heat flux

Day 2, Lecture 8, Suresh Menon, Georgia Tech

# **PSU RCM1 – Comparison CFD solvers**



Day 2, Lecture 8, Suresh Menon, Georgia Tech

# PSU RCM1 - Comparison 3D - 2D-axi LES



Day 2, Lecture 8, Suresh Menon, Georgia Tech

# **LOXGOX Experiment (PSU)**

- Work on previous configuration has helped design new experimental facility
  - Square chamber for easy optical access
  - Coflow to eliminate recirculation zones
    - Perforated plate approximated as uniform flow for now







# **LOXGOX – Operating conditions**

- Focus on the case with trans-critical injection
  - P > Pc AND Tinj < Tc for pure oxygen</p>
- Hybrid scheme can capture trans-critical layer



| Description               | Units              | Value               |  |  |  |  |  |  |
|---------------------------|--------------------|---------------------|--|--|--|--|--|--|
| Main chamber              |                    |                     |  |  |  |  |  |  |
| Chamber pressure          | Pa                 | $5.750 \times 10^6$ |  |  |  |  |  |  |
| Average density           | kg.m <sup>-3</sup> | 138                 |  |  |  |  |  |  |
| Average velocity          | m.s-1              | 4.57                |  |  |  |  |  |  |
| Preburner background flow |                    |                     |  |  |  |  |  |  |
| Mass flowrate             | kg.s <sup>-1</sup> | 0.268               |  |  |  |  |  |  |
| Inflow density            | kg.m <sup>-3</sup> | 84.6                |  |  |  |  |  |  |
| Inflow temperature        | K                  | 262                 |  |  |  |  |  |  |
| Compressibility           |                    | 0.998               |  |  |  |  |  |  |
| Inflow velocity           | m.s-1              | 5.95                |  |  |  |  |  |  |
| Injector inner post flow  |                    |                     |  |  |  |  |  |  |
| Mass flowrate             | $kg.s^{-1}$        | 0.0836              |  |  |  |  |  |  |
| Inflow density            | kg.m <sup>-3</sup> | 1080                |  |  |  |  |  |  |
| Inflow temperature        | K                  | 105                 |  |  |  |  |  |  |
| Compressibility           |                    | 0.195               |  |  |  |  |  |  |
| Inflow velocity           | m.s-1              | 23.3                |  |  |  |  |  |  |
| Injector annular flow     |                    |                     |  |  |  |  |  |  |
| Mass flowrate             | kg.s <sup>-1</sup> | 0.0557              |  |  |  |  |  |  |
| Inflow density            | kg.m <sup>-3</sup> | 82.3                |  |  |  |  |  |  |
| Inflow temperature        | K                  | 269                 |  |  |  |  |  |  |
| Compressibility           |                    | 0.999               |  |  |  |  |  |  |
| Inflow velocity           | m.s-1              | 101                 |  |  |  |  |  |  |

Day 2, Lecture 8, Suresh Menon, Georgia Tech

### **LOXGOX – Qualitative validation**

- Trying to reproduce backlit images
- Good qualitative agreement



Day 2, Lecture 8, Suresh Menon, Georgia Tech

### **LOXGOX – Quantitative validation**

- Measuring dark-core length
- Flow physics is captured with reasonable accuracy







Day 2, Lecture 8, Suresh Menon, Geor

### Observations from Rocket LES

- 3D simulations are required
  - Axisymmetric cannot capture flow physics
- Complex turbulent features require LES
  - But proper subgrid closures are still needed
- Validation of single-injector flow is still difficult
  - Good experimental data is rare
- Focus should move to multi-injector flows
  - More realistic configuration

# **Final Summary Comments**

- CFD is a tool that can be exploited with various levels of confidence and reliability for a range of problems
- Sometimes asking too much of a simple and reliable model may not be the proper thing to do....
- Key areas to be aware of
  - Numerical scheme's strengths and limitations
  - Choice of grid and boundary conditions
  - Turbulence closures (RANS, URANS, DES or LES)
  - Scalar mixing closure (turbulent and molecular)
  - Reaction kinetics closure (finite-rate, mixture fraction)
  - Parallel optimization and scalability is essential

# **Further Reading**

- All models and results discussed are in published papers
  - Cited work papers are available upon request
- Many excellent reviews and books are also available
  - Poinsot & Veynante: Theoretical and Numerical Combustion, Edwards, 2<sup>nd</sup>
  - Reviews by Pitsch (Ann. Rev. 2006), Janicka (Symp 2006), Peters (2008), Candel etc...
- Other papers are available
- LEM stand-alone codes can be used to learn and in needed implemented into in-house codes